This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
elinsn
Metamath Proof Explorer
Description: If the intersection of two classes is a (proper) singleton, then the
singleton element is a member of both classes. (Contributed by AV , 30-Dec-2021)
Ref
Expression
Assertion
elinsn
⊢ A ∈ V ∧ B ∩ C = A → A ∈ B ∧ A ∈ C
Proof
Step
Hyp
Ref
Expression
1
snidg
⊢ A ∈ V → A ∈ A
2
eleq2
⊢ B ∩ C = A → A ∈ B ∩ C ↔ A ∈ A
3
elin
⊢ A ∈ B ∩ C ↔ A ∈ B ∧ A ∈ C
4
3
biimpi
⊢ A ∈ B ∩ C → A ∈ B ∧ A ∈ C
5
2 4
biimtrrdi
⊢ B ∩ C = A → A ∈ A → A ∈ B ∧ A ∈ C
6
1 5
mpan9
⊢ A ∈ V ∧ B ∩ C = A → A ∈ B ∧ A ∈ C