This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eliniseg2
Metamath Proof Explorer
Description: Eliminate the class existence constraint in eliniseg . (Contributed by Mario Carneiro , 5-Dec-2014) (Revised by Mario Carneiro , 17-Nov-2015)
Ref
Expression
Assertion
eliniseg2
⊢ Rel ⁡ A → C ∈ A -1 B ↔ C A B
Proof
Step
Hyp
Ref
Expression
1
relcnv
⊢ Rel ⁡ A -1
2
elrelimasn
⊢ Rel ⁡ A -1 → C ∈ A -1 B ↔ B A -1 C
3
1 2
ax-mp
⊢ C ∈ A -1 B ↔ B A -1 C
4
relbrcnvg
⊢ Rel ⁡ A → B A -1 C ↔ C A B
5
3 4
bitrid
⊢ Rel ⁡ A → C ∈ A -1 B ↔ C A B