This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
elfz0lmr
Metamath Proof Explorer
Description: A member of a finite interval of nonnegative integers is either 0 or its
upper bound or an element of its interior. (Contributed by AV , 5-Feb-2021)
Ref
Expression
Assertion
elfz0lmr
⊢ K ∈ 0 … N → K = 0 ∨ K ∈ 1 ..^ N ∨ K = N
Proof
Step
Hyp
Ref
Expression
1
elfzlmr
⊢ K ∈ 0 … N → K = 0 ∨ K ∈ 0 + 1 ..^ N ∨ K = N
2
biid
⊢ K = 0 ↔ K = 0
3
0p1e1
⊢ 0 + 1 = 1
4
3
oveq1i
⊢ 0 + 1 ..^ N = 1 ..^ N
5
4
eleq2i
⊢ K ∈ 0 + 1 ..^ N ↔ K ∈ 1 ..^ N
6
biid
⊢ K = N ↔ K = N
7
2 5 6
3orbi123i
⊢ K = 0 ∨ K ∈ 0 + 1 ..^ N ∨ K = N ↔ K = 0 ∨ K ∈ 1 ..^ N ∨ K = N
8
1 7
sylib
⊢ K ∈ 0 … N → K = 0 ∨ K ∈ 1 ..^ N ∨ K = N