This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
elfvunirn
Metamath Proof Explorer
Description: A function value is a subset of the union of the range. (An artifact of
our function value definition, compare elfvdm ). (Contributed by Thierry Arnoux , 13-Nov-2016) Remove functionhood antecedent. (Revised by SN , 10-Jan-2025)
Ref
Expression
Assertion
elfvunirn
⊢ B ∈ F ⁡ A → B ∈ ⋃ ran ⁡ F
Proof
Step
Hyp
Ref
Expression
1
ne0i
⊢ B ∈ F ⁡ A → F ⁡ A ≠ ∅
2
fvn0fvelrn
⊢ F ⁡ A ≠ ∅ → F ⁡ A ∈ ran ⁡ F
3
elssuni
⊢ F ⁡ A ∈ ran ⁡ F → F ⁡ A ⊆ ⋃ ran ⁡ F
4
1 2 3
3syl
⊢ B ∈ F ⁡ A → F ⁡ A ⊆ ⋃ ran ⁡ F
5
4
sseld
⊢ B ∈ F ⁡ A → B ∈ F ⁡ A → B ∈ ⋃ ran ⁡ F
6
5
pm2.43i
⊢ B ∈ F ⁡ A → B ∈ ⋃ ran ⁡ F