This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Power Sets
Functions
elfvne0
Metamath Proof Explorer
Description: If a function value has a member, then the function is not an empty set
(An artifact of our function value definition.) (Contributed by Zhi Wang , 16-Sep-2024)
Ref
Expression
Assertion
elfvne0
⊢ A ∈ F ⁡ B → F ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
ne0i
⊢ A ∈ F ⁡ B → F ⁡ B ≠ ∅
2
fveq1
⊢ F = ∅ → F ⁡ B = ∅ ⁡ B
3
0fv
⊢ ∅ ⁡ B = ∅
4
2 3
eqtrdi
⊢ F = ∅ → F ⁡ B = ∅
5
4
necon3i
⊢ F ⁡ B ≠ ∅ → F ≠ ∅
6
1 5
syl
⊢ A ∈ F ⁡ B → F ≠ ∅