This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations
eleqvrelsrel
Metamath Proof Explorer
Description: For sets, being an element of the class of equivalence relations is
equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa , 24-Aug-2021)
Ref
Expression
Assertion
eleqvrelsrel
⊢ R ∈ V → R ∈ EqvRels ↔ EqvRel R
Proof
Step
Hyp
Ref
Expression
1
elrelsrel
⊢ R ∈ V → R ∈ Rels ↔ Rel ⁡ R
2
1
anbi2d
⊢ R ∈ V → I ↾ dom ⁡ R ⊆ R ∧ R -1 ⊆ R ∧ R ∘ R ⊆ R ∧ R ∈ Rels ↔ I ↾ dom ⁡ R ⊆ R ∧ R -1 ⊆ R ∧ R ∘ R ⊆ R ∧ Rel ⁡ R
3
eleqvrels2
⊢ R ∈ EqvRels ↔ I ↾ dom ⁡ R ⊆ R ∧ R -1 ⊆ R ∧ R ∘ R ⊆ R ∧ R ∈ Rels
4
dfeqvrel2
⊢ EqvRel R ↔ I ↾ dom ⁡ R ⊆ R ∧ R -1 ⊆ R ∧ R ∘ R ⊆ R ∧ Rel ⁡ R
5
2 3 4
3bitr4g
⊢ R ∈ V → R ∈ EqvRels ↔ EqvRel R