This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Converse reflexivity
elcnvrefrelsrel
Metamath Proof Explorer
Description: For sets, being an element of the class of converse reflexive relations
( df-cnvrefrels ) is equivalent to satisfying the converse reflexive
relation predicate. (Contributed by Peter Mazsa , 25-Jul-2021)
Ref
Expression
Assertion
elcnvrefrelsrel
⊢ R ∈ V → R ∈ CnvRefRels ↔ CnvRefRel R
Proof
Step
Hyp
Ref
Expression
1
elrelsrel
⊢ R ∈ V → R ∈ Rels ↔ Rel ⁡ R
2
1
anbi2d
⊢ R ∈ V → R ⊆ I ∩ dom ⁡ R × ran ⁡ R ∧ R ∈ Rels ↔ R ⊆ I ∩ dom ⁡ R × ran ⁡ R ∧ Rel ⁡ R
3
elcnvrefrels2
⊢ R ∈ CnvRefRels ↔ R ⊆ I ∩ dom ⁡ R × ran ⁡ R ∧ R ∈ Rels
4
dfcnvrefrel2
⊢ CnvRefRel R ↔ R ⊆ I ∩ dom ⁡ R × ran ⁡ R ∧ Rel ⁡ R
5
2 3 4
3bitr4g
⊢ R ∈ V → R ∈ CnvRefRels ↔ CnvRefRel R