This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem efald

Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypothesis efald.1 φ ¬ ψ
Assertion efald φ ψ

Proof

Step Hyp Ref Expression
1 efald.1 φ ¬ ψ
2 1 inegd φ ¬ ¬ ψ
3 2 notnotrd φ ψ