This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses ecase.1 ¬ φ χ
ecase.2 ¬ ψ χ
ecase.3 φ ψ χ
Assertion ecase χ

Proof

Step Hyp Ref Expression
1 ecase.1 ¬ φ χ
2 ecase.2 ¬ ψ χ
3 ecase.3 φ ψ χ
4 3 ex φ ψ χ
5 4 1 2 pm2.61nii χ