This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem dvfcn

Description: The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvfcn F : dom F

Proof

Step Hyp Ref Expression
1 cnelprrecn
2 dvfg F : dom F
3 1 2 ax-mp F : dom F