This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem drngringd

Description: A division ring is a ring. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis drngringd.1 φ R DivRing
Assertion drngringd φ R Ring

Proof

Step Hyp Ref Expression
1 drngringd.1 φ R DivRing
2 drngring R DivRing R Ring
3 1 2 syl φ R Ring