This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
domtri
Metamath Proof Explorer
Description: Trichotomy law for dominance and strict dominance. This theorem is
equivalent to the Axiom of Choice. (Contributed by NM , 4-Jan-2004)
(Revised by Mario Carneiro , 30-Apr-2015)
Ref
Expression
Assertion
domtri
⊢ A ∈ V ∧ B ∈ W → A ≼ B ↔ ¬ B ≺ A
Proof
Step
Hyp
Ref
Expression
1
numth3
⊢ A ∈ V → A ∈ dom ⁡ card
2
numth3
⊢ B ∈ W → B ∈ dom ⁡ card
3
domtri2
⊢ A ∈ dom ⁡ card ∧ B ∈ dom ⁡ card → A ≼ B ↔ ¬ B ≺ A
4
1 2 3
syl2an
⊢ A ∈ V ∧ B ∈ W → A ≼ B ↔ ¬ B ≺ A