This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets
domtrfir
Metamath Proof Explorer
Description: Transitivity of dominance relation for finite sets, proved without using
the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau , 24-Nov-2024)
Ref
Expression
Assertion
domtrfir
⊢ C ∈ Fin ∧ A ≼ B ∧ B ≼ C → A ≼ C
Proof
Step
Hyp
Ref
Expression
1
domfi
⊢ C ∈ Fin ∧ B ≼ C → B ∈ Fin
2
1
3adant2
⊢ C ∈ Fin ∧ A ≼ B ∧ B ≼ C → B ∈ Fin
3
domtrfi
⊢ B ∈ Fin ∧ A ≼ B ∧ B ≼ C → A ≼ C
4
2 3
syld3an1
⊢ C ∈ Fin ∧ A ≼ B ∧ B ≼ C → A ≼ C