This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
domeng
Metamath Proof Explorer
Description: Dominance in terms of equinumerosity, with the sethood requirement
expressed as an antecedent. Example 1 of Enderton p. 146.
(Contributed by NM , 24-Apr-2004)
Ref
Expression
Assertion
domeng
⊢ B ∈ C → A ≼ B ↔ ∃ x A ≈ x ∧ x ⊆ B
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢ y = B → A ≼ y ↔ A ≼ B
2
sseq2
⊢ y = B → x ⊆ y ↔ x ⊆ B
3
2
anbi2d
⊢ y = B → A ≈ x ∧ x ⊆ y ↔ A ≈ x ∧ x ⊆ B
4
3
exbidv
⊢ y = B → ∃ x A ≈ x ∧ x ⊆ y ↔ ∃ x A ≈ x ∧ x ⊆ B
5
vex
⊢ y ∈ V
6
5
domen
⊢ A ≼ y ↔ ∃ x A ≈ x ∧ x ⊆ y
7
1 4 6
vtoclbg
⊢ B ∈ C → A ≼ B ↔ ∃ x A ≈ x ∧ x ⊆ B