This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem dmresv

Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008)

Ref Expression
Assertion dmresv dom A V = dom A

Proof

Step Hyp Ref Expression
1 dmres dom A V = V dom A
2 incom V dom A = dom A V
3 inv1 dom A V = dom A
4 1 2 3 3eqtri dom A V = dom A