This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmmptg
Metamath Proof Explorer
Description: The domain of the mapping operation is the stated domain, if the
function value is always a set. (Contributed by Mario Carneiro , 9-Feb-2013) (Revised by Mario Carneiro , 14-Sep-2013)
Ref
Expression
Assertion
dmmptg
⊢ ∀ x ∈ A B ∈ V → dom ⁡ x ∈ A ⟼ B = A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ x ∈ A ⟼ B = x ∈ A ⟼ B
2
1
dmmpt
⊢ dom ⁡ x ∈ A ⟼ B = x ∈ A | B ∈ V
3
elex
⊢ B ∈ V → B ∈ V
4
3
ralimi
⊢ ∀ x ∈ A B ∈ V → ∀ x ∈ A B ∈ V
5
rabid2
⊢ A = x ∈ A | B ∈ V ↔ ∀ x ∈ A B ∈ V
6
4 5
sylibr
⊢ ∀ x ∈ A B ∈ V → A = x ∈ A | B ∈ V
7
2 6
eqtr4id
⊢ ∀ x ∈ A B ∈ V → dom ⁡ x ∈ A ⟼ B = A