This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dford5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson | ||
| 2 | ordtr | ||
| 3 | 1 2 | jca | |
| 4 | epweon | ||
| 5 | wess | ||
| 6 | 4 5 | mpi | |
| 7 | df-ord | ||
| 8 | 7 | biimpri | |
| 9 | 8 | ancoms | |
| 10 | 6 9 | sylan | |
| 11 | 3 10 | impbii |