This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Left ideals and spans
dflidl2
Metamath Proof Explorer
Description: Alternate (the usual textbook) definition of a (left) ideal of a ring to
be a subgroup of the additive group of the ring which is closed under
left-multiplication by elements of the full ring. (Contributed by AV , 13-Feb-2025) (Proof shortened by AV , 18-Apr-2025)
Ref
Expression
Hypotheses
dflidl2.u
⊢ U = LIdeal ⁡ R
dflidl2.b
⊢ B = Base R
dflidl2.t
⊢ · ˙ = ⋅ R
Assertion
dflidl2
⊢ R ∈ Ring → I ∈ U ↔ I ∈ SubGrp ⁡ R ∧ ∀ x ∈ B ∀ y ∈ I x · ˙ y ∈ I
Proof
Step
Hyp
Ref
Expression
1
dflidl2.u
⊢ U = LIdeal ⁡ R
2
dflidl2.b
⊢ B = Base R
3
dflidl2.t
⊢ · ˙ = ⋅ R
4
1
lidlsubg
⊢ R ∈ Ring ∧ I ∈ U → I ∈ SubGrp ⁡ R
5
ringrng
⊢ R ∈ Ring → R ∈ Rng
6
1 2 3
dflidl2rng
⊢ R ∈ Rng ∧ I ∈ SubGrp ⁡ R → I ∈ U ↔ ∀ x ∈ B ∀ y ∈ I x · ˙ y ∈ I
7
5 6
sylan
⊢ R ∈ Ring ∧ I ∈ SubGrp ⁡ R → I ∈ U ↔ ∀ x ∈ B ∀ y ∈ I x · ˙ y ∈ I
8
4 7
biadanid
⊢ R ∈ Ring → I ∈ U ↔ I ∈ SubGrp ⁡ R ∧ ∀ x ∈ B ∀ y ∈ I x · ˙ y ∈ I