This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem dfiota2

Description: Alternate definition for descriptions. Definition 8.18 in Quine p. 56. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion dfiota2 ι x | φ = y | x φ x = y

Proof

Step Hyp Ref Expression
1 df-iota ι x | φ = y | x | φ = y
2 absn x | φ = y x φ x = y
3 2 abbii y | x | φ = y = y | x φ x = y
4 3 unieqi y | x | φ = y = y | x φ x = y
5 1 4 eqtri ι x | φ = y | x φ x = y