This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dfima3
Metamath Proof Explorer
Description: Alternate definition of image. Compare definition (d) of Enderton
p. 44. (Contributed by NM , 14-Aug-1994) (Proof shortened by Andrew
Salmon , 27-Aug-2011)
Ref
Expression
Assertion
dfima3
⊢ A B = y | ∃ x x ∈ B ∧ x y ∈ A
Proof
Step
Hyp
Ref
Expression
1
dfima2
⊢ A B = y | ∃ x ∈ B x A y
2
df-br
⊢ x A y ↔ x y ∈ A
3
2
rexbii
⊢ ∃ x ∈ B x A y ↔ ∃ x ∈ B x y ∈ A
4
df-rex
⊢ ∃ x ∈ B x y ∈ A ↔ ∃ x x ∈ B ∧ x y ∈ A
5
3 4
bitri
⊢ ∃ x ∈ B x A y ↔ ∃ x x ∈ B ∧ x y ∈ A
6
5
abbii
⊢ y | ∃ x ∈ B x A y = y | ∃ x x ∈ B ∧ x y ∈ A
7
1 6
eqtri
⊢ A B = y | ∃ x x ∈ B ∧ x y ∈ A