This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dff14i
Metamath Proof Explorer
Description: A one-to-one function maps different arguments onto different values.
Implication of the alternate definition dff14a . (Contributed by AV , 30-Oct-2025)
Ref
Expression
Assertion
dff14i
⊢ F : A ⟶ 1-1 B ∧ X ∈ A ∧ Y ∈ A ∧ X ≠ Y → F ⁡ X ≠ F ⁡ Y
Proof
Step
Hyp
Ref
Expression
1
f1veqaeq
⊢ F : A ⟶ 1-1 B ∧ X ∈ A ∧ Y ∈ A → F ⁡ X = F ⁡ Y → X = Y
2
1
necon3d
⊢ F : A ⟶ 1-1 B ∧ X ∈ A ∧ Y ∈ A → X ≠ Y → F ⁡ X ≠ F ⁡ Y
3
2
exp32
⊢ F : A ⟶ 1-1 B → X ∈ A → Y ∈ A → X ≠ Y → F ⁡ X ≠ F ⁡ Y
4
3
3imp2
⊢ F : A ⟶ 1-1 B ∧ X ∈ A ∧ Y ∈ A ∧ X ≠ Y → F ⁡ X ≠ F ⁡ Y