This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem dfdisjs

Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021)

Ref Expression
Assertion dfdisjs Disjs = r Rels | r -1 CnvRefRels

Proof

Step Hyp Ref Expression
1 df-disjs Disjs = Disjss Rels
2 df-disjss Disjss = r | r -1 CnvRefRels
3 1 2 abeqin Disjs = r Rels | r -1 CnvRefRels