This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
df-toply1
Metamath Proof Explorer
Description: Define a function which maps a coefficient function for a univariate
polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro , 12-Jun-2015)
Ref
Expression
Assertion
df-toply1
⊢ toPoly 1 = f ∈ V ⟼ n ∈ ℕ 0 1 𝑜 ⟼ f ⁡ n ⁡ ∅
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctp1
class toPoly 1
1
vf
setvar f
2
cvv
class V
3
vn
setvar n
4
cn0
class ℕ 0
5
cmap
class ↑ 𝑚
6
c1o
class 1 𝑜
7
4 6 5
co
class ℕ 0 1 𝑜
8
1
cv
setvar f
9
3
cv
setvar n
10
c0
class ∅
11
10 9
cfv
class n ⁡ ∅
12
11 8
cfv
class f ⁡ n ⁡ ∅
13
3 7 12
cmpt
class n ∈ ℕ 0 1 𝑜 ⟼ f ⁡ n ⁡ ∅
14
1 2 13
cmpt
class f ∈ V ⟼ n ∈ ℕ 0 1 𝑜 ⟼ f ⁡ n ⁡ ∅
15
0 14
wceq
wff toPoly 1 = f ∈ V ⟼ n ∈ ℕ 0 1 𝑜 ⟼ f ⁡ n ⁡ ∅