This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
df-thinc
Metamath Proof Explorer
Description: Definition of the class of thin categories, or posetal categories, whose
hom-sets each contain at most one morphism. Example 3.26(2) of Adamek
p. 33. "ThinCat" was taken instead of "PosCat" because the latter might
mean the category of posets. (Contributed by Zhi Wang , 17-Sep-2024)
Ref
Expression
Assertion
df-thinc
⊢ ThinCat = c ∈ Cat | [ ˙ Base c / b ] ˙ [ ˙ Hom ⁡ c / h ] ˙ ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cthinc
class ThinCat
1
vc
setvar c
2
ccat
class Cat
3
cbs
class Base
4
1
cv
setvar c
5
4 3
cfv
class Base c
6
vb
setvar b
7
chom
class Hom
8
4 7
cfv
class Hom ⁡ c
9
vh
setvar h
10
vx
setvar x
11
6
cv
setvar b
12
vy
setvar y
13
vf
setvar f
14
13
cv
setvar f
15
10
cv
setvar x
16
9
cv
setvar h
17
12
cv
setvar y
18
15 17 16
co
class x h y
19
14 18
wcel
wff f ∈ x h y
20
19 13
wmo
wff ∃ * f f ∈ x h y
21
20 12 11
wral
wff ∀ y ∈ b ∃ * f f ∈ x h y
22
21 10 11
wral
wff ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y
23
22 9 8
wsbc
wff [ ˙ Hom ⁡ c / h ] ˙ ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y
24
23 6 5
wsbc
wff [ ˙ Base c / b ] ˙ [ ˙ Hom ⁡ c / h ] ˙ ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y
25
24 1 2
crab
class c ∈ Cat | [ ˙ Base c / b ] ˙ [ ˙ Hom ⁡ c / h ] ˙ ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y
26
0 25
wceq
wff ThinCat = c ∈ Cat | [ ˙ Base c / b ] ˙ [ ˙ Hom ⁡ c / h ] ˙ ∀ x ∈ b ∀ y ∈ b ∃ * f f ∈ x h y