This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
The "shift" operation
df-shft
Metamath Proof Explorer
Description: Define a function shifter. This operation offsets the value argument of
a function (ordinarily on a subset of CC ) and produces a new
function on CC . See shftval for its value. (Contributed by NM , 20-Jul-2005)
Ref
Expression
Assertion
df-shft
⊢ shift = f ∈ V , x ∈ ℂ ⟼ y z | y ∈ ℂ ∧ y − x f z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cshi
class shift
1
vf
setvar f
2
cvv
class V
3
vx
setvar x
4
cc
class ℂ
5
vy
setvar y
6
vz
setvar z
7
5
cv
setvar y
8
7 4
wcel
wff y ∈ ℂ
9
cmin
class −
10
3
cv
setvar x
11
7 10 9
co
class y − x
12
1
cv
setvar f
13
6
cv
setvar z
14
11 13 12
wbr
wff y − x f z
15
8 14
wa
wff y ∈ ℂ ∧ y − x f z
16
15 5 6
copab
class y z | y ∈ ℂ ∧ y − x f z
17
1 3 2 4 16
cmpo
class f ∈ V , x ∈ ℂ ⟼ y z | y ∈ ℂ ∧ y − x f z
18
0 17
wceq
wff shift = f ∈ V , x ∈ ℂ ⟼ y z | y ∈ ℂ ∧ y − x f z