This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
df-sate
Metamath Proof Explorer
Description: A simplified version of the satisfaction predicate, using the standard
membership relation and eliminating the extra variable n .
(Contributed by Mario Carneiro , 14-Jul-2013)
Ref
Expression
Assertion
df-sate
⊢ Sat ∈ = m ∈ V , u ∈ V ⟼ m Sat E ∩ m × m ⁡ ω ⁡ u
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
csate
class Sat ∈
1
vm
setvar m
2
cvv
class V
3
vu
setvar u
4
1
cv
setvar m
5
csat
class Sat
6
cep
class E
7
4 4
cxp
class m × m
8
6 7
cin
class E ∩ m × m
9
4 8 5
co
class m Sat E ∩ m × m
10
com
class ω
11
10 9
cfv
class m Sat E ∩ m × m ⁡ ω
12
3
cv
setvar u
13
12 11
cfv
class m Sat E ∩ m × m ⁡ ω ⁡ u
14
1 3 2 2 13
cmpo
class m ∈ V , u ∈ V ⟼ m Sat E ∩ m × m ⁡ ω ⁡ u
15
0 14
wceq
wff Sat ∈ = m ∈ V , u ∈ V ⟼ m Sat E ∩ m × m ⁡ ω ⁡ u