This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
df-risefac
Metamath Proof Explorer
Description: Define the rising factorial function. This is the function
( A x. ( A + 1 ) x. ... ( A + N ) ) for complex A and
nonnegative integers N . (Contributed by Scott Fenton , 5-Jan-2018)
Ref
Expression
Assertion
df-risefac
⊢ RiseFac = x ∈ ℂ , n ∈ ℕ 0 ⟼ ∏ k = 0 n − 1 x + k
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
crisefac
class RiseFac
1
vx
setvar x
2
cc
class ℂ
3
vn
setvar n
4
cn0
class ℕ 0
5
vk
setvar k
6
cc0
class 0
7
cfz
class …
8
3
cv
setvar n
9
cmin
class −
10
c1
class 1
11
8 10 9
co
class n − 1
12
6 11 7
co
class 0 … n − 1
13
1
cv
setvar x
14
caddc
class +
15
5
cv
setvar k
16
13 15 14
co
class x + k
17
12 16 5
cprod
class ∏ k = 0 n − 1 x + k
18
1 3 2 4 17
cmpo
class x ∈ ℂ , n ∈ ℕ 0 ⟼ ∏ k = 0 n − 1 x + k
19
0 18
wceq
wff RiseFac = x ∈ ℂ , n ∈ ℕ 0 ⟼ ∏ k = 0 n − 1 x + k