This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
df-rest
Metamath Proof Explorer
Description: Function returning the subspace topology induced by the topology y
and the set x . (Contributed by FL , 20-Sep-2010) (Revised by Mario Carneiro , 1-May-2015)
Ref
Expression
Assertion
df-rest
⊢ ↾ 𝑡 = j ∈ V , x ∈ V ⟼ ran ⁡ y ∈ j ⟼ y ∩ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
crest
class ↾ 𝑡
1
vj
setvar j
2
cvv
class V
3
vx
setvar x
4
vy
setvar y
5
1
cv
setvar j
6
4
cv
setvar y
7
3
cv
setvar x
8
6 7
cin
class y ∩ x
9
4 5 8
cmpt
class y ∈ j ⟼ y ∩ x
10
9
crn
class ran ⁡ y ∈ j ⟼ y ∩ x
11
1 3 2 2 10
cmpo
class j ∈ V , x ∈ V ⟼ ran ⁡ y ∈ j ⟼ y ∩ x
12
0 11
wceq
wff ↾ 𝑡 = j ∈ V , x ∈ V ⟼ ran ⁡ y ∈ j ⟼ y ∩ x