This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010)
|
|
Ref |
Expression |
|
Assertion |
df-ref |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cref |
|
| 1 |
|
vx |
|
| 2 |
|
vy |
|
| 3 |
2
|
cv |
|
| 4 |
3
|
cuni |
|
| 5 |
1
|
cv |
|
| 6 |
5
|
cuni |
|
| 7 |
4 6
|
wceq |
|
| 8 |
|
vz |
|
| 9 |
|
vw |
|
| 10 |
8
|
cv |
|
| 11 |
9
|
cv |
|
| 12 |
10 11
|
wss |
|
| 13 |
12 9 3
|
wrex |
|
| 14 |
13 8 5
|
wral |
|
| 15 |
7 14
|
wa |
|
| 16 |
15 1 2
|
copab |
|
| 17 |
0 16
|
wceq |
|