This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010)
|
|
Ref |
Expression |
|
Assertion |
df-prt |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
|
| 1 |
0
|
wprt |
|
| 2 |
|
vx |
|
| 3 |
|
vy |
|
| 4 |
2
|
cv |
|
| 5 |
3
|
cv |
|
| 6 |
4 5
|
wceq |
|
| 7 |
4 5
|
cin |
|
| 8 |
|
c0 |
|
| 9 |
7 8
|
wceq |
|
| 10 |
6 9
|
wo |
|
| 11 |
10 3 0
|
wral |
|
| 12 |
11 2 0
|
wral |
|
| 13 |
1 12
|
wb |
|