This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
df-perf
Metamath Proof Explorer
Description: Define the class of all perfect spaces. A perfect space is one for which
every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro , 24-Dec-2016)
Ref
Expression
Assertion
df-perf
⊢ Perf = j ∈ Top | limPt ⁡ j ⁡ ⋃ j = ⋃ j
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cperf
class Perf
1
vj
setvar j
2
ctop
class Top
3
clp
class limPt
4
1
cv
setvar j
5
4 3
cfv
class limPt ⁡ j
6
4
cuni
class ⋃ j
7
6 5
cfv
class limPt ⁡ j ⁡ ⋃ j
8
7 6
wceq
wff limPt ⁡ j ⁡ ⋃ j = ⋃ j
9
8 1 2
crab
class j ∈ Top | limPt ⁡ j ⁡ ⋃ j = ⋃ j
10
0 9
wceq
wff Perf = j ∈ Top | limPt ⁡ j ⁡ ⋃ j = ⋃ j