This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
df-nrg
Metamath Proof Explorer
Description: A normed ring is a ring with an induced topology and metric such that
the metric is translation-invariant and the norm (distance from 0) is an
absolute value on the ring. (Contributed by Mario Carneiro , 4-Oct-2015)
Ref
Expression
Assertion
df-nrg
⊢ NrmRing = w ∈ NrmGrp | norm ⁡ w ∈ AbsVal ⁡ w
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cnrg
class NrmRing
1
vw
setvar w
2
cngp
class NrmGrp
3
cnm
class norm
4
1
cv
setvar w
5
4 3
cfv
class norm ⁡ w
6
cabv
class AbsVal
7
4 6
cfv
class AbsVal ⁡ w
8
5 7
wcel
wff norm ⁡ w ∈ AbsVal ⁡ w
9
8 1 2
crab
class w ∈ NrmGrp | norm ⁡ w ∈ AbsVal ⁡ w
10
0 9
wceq
wff NrmRing = w ∈ NrmGrp | norm ⁡ w ∈ AbsVal ⁡ w