This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The modulo (remainder) operation
df-mod
Metamath Proof Explorer
Description: Define the modulo (remainder) operation. See modval for its value.
For example, ( 5 mod 3 ) = 2 and ( -u 7 mod 2 ) = 1
( ex-mod ). (Contributed by NM , 10-Nov-2008)
Ref
Expression
Assertion
df-mod
⊢ mod = x ∈ ℝ , y ∈ ℝ + ⟼ x − y ⁢ x y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmo
class mod
1
vx
setvar x
2
cr
class ℝ
3
vy
setvar y
4
crp
class ℝ +
5
1
cv
setvar x
6
cmin
class −
7
3
cv
setvar y
8
cmul
class ×
9
cfl
class .
10
cdiv
class ÷
11
5 7 10
co
class x y
12
11 9
cfv
class x y
13
7 12 8
co
class y ⁢ x y
14
5 13 6
co
class x − y ⁢ x y
15
1 3 2 4 14
cmpo
class x ∈ ℝ , y ∈ ℝ + ⟼ x − y ⁢ x y
16
0 15
wceq
wff mod = x ∈ ℝ , y ∈ ℝ + ⟼ x − y ⁢ x y