This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
df-lplanes
Metamath Proof Explorer
Description: Define the set of all "lattice planes" (lattice elements which cover a
line) in a Hilbert lattice k , in other words all elements of height
3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM , 16-Jun-2012)
Ref
Expression
Assertion
df-lplanes
⊢ LPlanes = k ∈ V ⟼ x ∈ Base k | ∃ p ∈ LLines ⁡ k p ⋖ k x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clpl
class LPlanes
1
vk
setvar k
2
cvv
class V
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar k
6
5 4
cfv
class Base k
7
vp
setvar p
8
clln
class LLines
9
5 8
cfv
class LLines ⁡ k
10
7
cv
setvar p
11
ccvr
class ⋖
12
5 11
cfv
class ⋖ k
13
3
cv
setvar x
14
10 13 12
wbr
wff p ⋖ k x
15
14 7 9
wrex
wff ∃ p ∈ LLines ⁡ k p ⋖ k x
16
15 3 6
crab
class x ∈ Base k | ∃ p ∈ LLines ⁡ k p ⋖ k x
17
1 2 16
cmpt
class k ∈ V ⟼ x ∈ Base k | ∃ p ∈ LLines ⁡ k p ⋖ k x
18
0 17
wceq
wff LPlanes = k ∈ V ⟼ x ∈ Base k | ∃ p ∈ LLines ⁡ k p ⋖ k x