This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC CATEGORY THEORY
Categories
Categories
df-homf
Metamath Proof Explorer
Description: Define the functionalized Hom-set operator, which is exactly like
Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro , 4-Jan-2017)
Ref
Expression
Assertion
df-homf
⊢ Hom 𝑓 = c ∈ V ⟼ x ∈ Base c , y ∈ Base c ⟼ x Hom ⁡ c y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
chomf
class Hom 𝑓
1
vc
setvar c
2
cvv
class V
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar c
6
5 4
cfv
class Base c
7
vy
setvar y
8
3
cv
setvar x
9
chom
class Hom
10
5 9
cfv
class Hom ⁡ c
11
7
cv
setvar y
12
8 11 10
co
class x Hom ⁡ c y
13
3 7 6 6 12
cmpo
class x ∈ Base c , y ∈ Base c ⟼ x Hom ⁡ c y
14
1 2 13
cmpt
class c ∈ V ⟼ x ∈ Base c , y ∈ Base c ⟼ x Hom ⁡ c y
15
0 14
wceq
wff Hom 𝑓 = c ∈ V ⟼ x ∈ Base c , y ∈ Base c ⟼ x Hom ⁡ c y