This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hmop |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cho | ||
| 1 | vt | ||
| 2 | chba | ||
| 3 | cmap | ||
| 4 | 2 2 3 | co | |
| 5 | vx | ||
| 6 | vy | ||
| 7 | 5 | cv | |
| 8 | csp | ||
| 9 | 1 | cv | |
| 10 | 6 | cv | |
| 11 | 10 9 | cfv | |
| 12 | 7 11 8 | co | |
| 13 | 7 9 | cfv | |
| 14 | 13 10 8 | co | |
| 15 | 12 14 | wceq | |
| 16 | 15 6 2 | wral | |
| 17 | 16 5 2 | wral | |
| 18 | 17 1 4 | crab | |
| 19 | 0 18 | wceq |