This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v . (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-h0v |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c0v | ||
| 1 | cn0v | ||
| 2 | cva | ||
| 3 | csm | ||
| 4 | 2 3 | cop | |
| 5 | cno | ||
| 6 | 4 5 | cop | |
| 7 | 6 1 | cfv | |
| 8 | 0 7 | wceq |