This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC CATEGORY THEORY
Categories
Full & faithful functors
df-fth
Metamath Proof Explorer
Description: Function returning all the faithful functors from a category C to a
category D . A faithful functor is a functor in which all the
morphism maps G ( X , Y ) between objects X , Y e. C are
injections. Definition 3.27(2) in Adamek p. 34. (Contributed by Mario Carneiro , 26-Jan-2017)
Ref
Expression
Assertion
df-fth
⊢ Faith = c ∈ Cat , d ∈ Cat ⟼ f g | f c Func d g ∧ ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfth
class Faith
1
vc
setvar c
2
ccat
class Cat
3
vd
setvar d
4
vf
setvar f
5
vg
setvar g
6
4
cv
setvar f
7
1
cv
setvar c
8
cfunc
class Func
9
3
cv
setvar d
10
7 9 8
co
class c Func d
11
5
cv
setvar g
12
6 11 10
wbr
wff f c Func d g
13
vx
setvar x
14
cbs
class Base
15
7 14
cfv
class Base c
16
vy
setvar y
17
13
cv
setvar x
18
16
cv
setvar y
19
17 18 11
co
class x g y
20
19
ccnv
class x g y -1
21
20
wfun
wff Fun ⁡ x g y -1
22
21 16 15
wral
wff ∀ y ∈ Base c Fun ⁡ x g y -1
23
22 13 15
wral
wff ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1
24
12 23
wa
wff f c Func d g ∧ ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1
25
24 4 5
copab
class f g | f c Func d g ∧ ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1
26
1 3 2 2 25
cmpo
class c ∈ Cat , d ∈ Cat ⟼ f g | f c Func d g ∧ ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1
27
0 26
wceq
wff Faith = c ∈ Cat , d ∈ Cat ⟼ f g | f c Func d g ∧ ∀ x ∈ Base c ∀ y ∈ Base c Fun ⁡ x g y -1