This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Free monoids
df-frmd
Metamath Proof Explorer
Description: Define a free monoid over a set i of generators, defined as the set of
finite strings on I with the operation of concatenation. (Contributed by Mario Carneiro , 27-Sep-2015)
Ref
Expression
Assertion
df-frmd
⊢ freeMnd = i ∈ V ⟼ Base ndx Word i + ndx ++ ↾ Word i × Word i
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfrmd
class freeMnd
1
vi
setvar i
2
cvv
class V
3
cbs
class Base
4
cnx
class ndx
5
4 3
cfv
class Base ndx
6
1
cv
setvar i
7
6
cword
class Word i
8
5 7
cop
class Base ndx Word i
9
cplusg
class + 𝑔
10
4 9
cfv
class + ndx
11
cconcat
class ++
12
7 7
cxp
class Word i × Word i
13
11 12
cres
class ++ ↾ Word i × Word i
14
10 13
cop
class + ndx ++ ↾ Word i × Word i
15
8 14
cpr
class Base ndx Word i + ndx ++ ↾ Word i × Word i
16
1 2 15
cmpt
class i ∈ V ⟼ Base ndx Word i + ndx ++ ↾ Word i × Word i
17
0 16
wceq
wff freeMnd = i ∈ V ⟼ Base ndx Word i + ndx ++ ↾ Word i × Word i