This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Free groups
df-frgp
Metamath Proof Explorer
Description: Define the free group on a set I of generators, defined as the
quotient of the free monoid on I X. 2o (representing the generator
elements and their formal inverses) by the free group equivalence
relation df-efg . (Contributed by Mario Carneiro , 1-Oct-2015)
Ref
Expression
Assertion
df-frgp
⊢ freeGrp = i ∈ V ⟼ freeMnd ⁡ i × 2 𝑜 / 𝑠 ~ FG ⁡ i
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfrgp
class freeGrp
1
vi
setvar i
2
cvv
class V
3
cfrmd
class freeMnd
4
1
cv
setvar i
5
c2o
class 2 𝑜
6
4 5
cxp
class i × 2 𝑜
7
6 3
cfv
class freeMnd ⁡ i × 2 𝑜
8
cqus
class / 𝑠
9
cefg
class ~ FG
10
4 9
cfv
class ~ FG ⁡ i
11
7 10 8
co
class freeMnd ⁡ i × 2 𝑜 / 𝑠 ~ FG ⁡ i
12
1 2 11
cmpt
class i ∈ V ⟼ freeMnd ⁡ i × 2 𝑜 / 𝑠 ~ FG ⁡ i
13
0 12
wceq
wff freeGrp = i ∈ V ⟼ freeMnd ⁡ i × 2 𝑜 / 𝑠 ~ FG ⁡ i