This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ORDER THEORY
Preordered sets and directed sets
df-drs
Metamath Proof Explorer
Description: Define the class of directed sets. A directed set is a nonempty
preordered set where every pair of elements have some upper bound. Note
that it is not required that there exist aleast upper bound.
There is no consensus in the literature over whether directed sets are
allowed to be empty. It is slightly more convenient for us if they are
not. (Contributed by Stefan O'Rear , 1-Feb-2015)
Ref
Expression
Assertion
df-drs
⊢ Dirset = f ∈ Proset | [ ˙ Base f / b ] ˙ [ ˙ ≤ f / r ] ˙ b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cdrs
class Dirset
1
vf
setvar f
2
cproset
class Proset
3
cbs
class Base
4
1
cv
setvar f
5
4 3
cfv
class Base f
6
vb
setvar b
7
cple
class le
8
4 7
cfv
class ≤ f
9
vr
setvar r
10
6
cv
setvar b
11
c0
class ∅
12
10 11
wne
wff b ≠ ∅
13
vx
setvar x
14
vy
setvar y
15
vz
setvar z
16
13
cv
setvar x
17
9
cv
setvar r
18
15
cv
setvar z
19
16 18 17
wbr
wff x r z
20
14
cv
setvar y
21
20 18 17
wbr
wff y r z
22
19 21
wa
wff x r z ∧ y r z
23
22 15 10
wrex
wff ∃ z ∈ b x r z ∧ y r z
24
23 14 10
wral
wff ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
25
24 13 10
wral
wff ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
26
12 25
wa
wff b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
27
26 9 8
wsbc
wff [ ˙ ≤ f / r ] ˙ b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
28
27 6 5
wsbc
wff [ ˙ Base f / b ] ˙ [ ˙ ≤ f / r ] ˙ b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
29
28 1 2
crab
class f ∈ Proset | [ ˙ Base f / b ] ˙ [ ˙ ≤ f / r ] ˙ b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z
30
0 29
wceq
wff Dirset = f ∈ Proset | [ ˙ Base f / b ] ˙ [ ˙ ≤ f / r ] ˙ b ≠ ∅ ∧ ∀ x ∈ b ∀ y ∈ b ∃ z ∈ b x r z ∧ y r z