This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
df-div
Metamath Proof Explorer
Description: Define division. Theorem divmuli relates it to multiplication, and
divcli and redivcli prove its closure laws. (Contributed by NM , 2-Feb-1995) Use divval instead. (Revised by Mario Carneiro , 1-Apr-2014) (New usage is discouraged.)
Ref
Expression
Assertion
df-div
⊢ ÷ = x ∈ ℂ , y ∈ ℂ ∖ 0 ⟼ ι z ∈ ℂ | y ⁢ z = x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cdiv
class ÷
1
vx
setvar x
2
cc
class ℂ
3
vy
setvar y
4
cc0
class 0
5
4
csn
class 0
6
2 5
cdif
class ℂ ∖ 0
7
vz
setvar z
8
3
cv
setvar y
9
cmul
class ×
10
7
cv
setvar z
11
8 10 9
co
class y ⁢ z
12
1
cv
setvar x
13
11 12
wceq
wff y ⁢ z = x
14
13 7 2
crio
class ι z ∈ ℂ | y ⁢ z = x
15
1 3 2 6 14
cmpo
class x ∈ ℂ , y ∈ ℂ ∖ 0 ⟼ ι z ∈ ℂ | y ⁢ z = x
16
0 15
wceq
wff ÷ = x ∈ ℂ , y ∈ ℂ ∖ 0 ⟼ ι z ∈ ℂ | y ⁢ z = x