This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the converse reflexive relation predicate (read: R is a converse reflexive relation), see also the comment of dfcnvrefrel3 . Alternate definitions are dfcnvrefrel2 and dfcnvrefrel3 . (Contributed by Peter Mazsa, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnvrefrel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ||
| 1 | 0 | wcnvrefrel | |
| 2 | 0 | cdm | |
| 3 | 0 | crn | |
| 4 | 2 3 | cxp | |
| 5 | 0 4 | cin | |
| 6 | cid | ||
| 7 | 6 4 | cin | |
| 8 | 5 7 | wss | |
| 9 | 0 | wrel | |
| 10 | 8 9 | wa | |
| 11 | 1 10 | wb |