This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Commutes relation for Hilbert lattice elements
df-cm
Metamath Proof Explorer
Definition df-cm
Description: Define the commutes relation (on the Hilbert lattice). Definition of
commutes in Kalmbach p. 20, who uses the notation xCy for "x commutes
with y." See cmbri for membership relation. (Contributed by NM , 14-Jun-2004) (New usage is discouraged.)
Ref
Expression
Assertion
df-cm
⊢ 𝐶 ℋ = x y | x ∈ C ℋ ∧ y ∈ C ℋ ∧ x = x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ccm
class 𝐶 ℋ
1
vx
setvar x
2
vy
setvar y
3
1
cv
setvar x
4
cch
class C ℋ
5
3 4
wcel
wff x ∈ C ℋ
6
2
cv
setvar y
7
6 4
wcel
wff y ∈ C ℋ
8
5 7
wa
wff x ∈ C ℋ ∧ y ∈ C ℋ
9
3 6
cin
class x ∩ y
10
chj
class ∨ ℋ
11
cort
class ⊥
12
6 11
cfv
class ⊥ ⁡ y
13
3 12
cin
class x ∩ ⊥ ⁡ y
14
9 13 10
co
class x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y
15
3 14
wceq
wff x = x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y
16
8 15
wa
wff x ∈ C ℋ ∧ y ∈ C ℋ ∧ x = x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y
17
16 1 2
copab
class x y | x ∈ C ℋ ∧ y ∈ C ℋ ∧ x = x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y
18
0 17
wceq
wff 𝐶 ℋ = x y | x ∈ C ℋ ∧ y ∈ C ℋ ∧ x = x ∩ y ∨ ℋ x ∩ ⊥ ⁡ y