This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-0o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c0o | ||
| 1 | vu | ||
| 2 | cnv | ||
| 3 | vw | ||
| 4 | cba | ||
| 5 | 1 | cv | |
| 6 | 5 4 | cfv | |
| 7 | cn0v | ||
| 8 | 3 | cv | |
| 9 | 8 7 | cfv | |
| 10 | 9 | csn | |
| 11 | 6 10 | cxp | |
| 12 | 1 3 2 2 11 | cmpo | |
| 13 | 0 12 | wceq |