This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by A includes its generator. Although this theorem holds for any class G , the definition of F is only meaningful if G is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubggend.1 | ||
| cycsubggend.2 | |||
| cycsubggend.3 | |||
| cycsubggend.4 | |||
| Assertion | cycsubggend |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubggend.1 | ||
| 2 | cycsubggend.2 | ||
| 3 | cycsubggend.3 | ||
| 4 | cycsubggend.4 | ||
| 5 | 1zzd | ||
| 6 | simpr | ||
| 7 | 6 | oveq1d | |
| 8 | 4 | adantr | |
| 9 | 1 2 | mulg1 | |
| 10 | 8 9 | syl | |
| 11 | 7 10 | eqtr2d | |
| 12 | 3 5 4 11 | elrnmptdv |