This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The cyclic subgroup generated by A is a subgroup. Deduction related
to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
cycsubgcld.1 |
|
|
|
cycsubgcld.2 |
|
|
|
cycsubgcld.3 |
|
|
|
cycsubgcld.4 |
|
|
|
cycsubgcld.5 |
|
|
Assertion |
cycsubgcld |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubgcld.1 |
|
| 2 |
|
cycsubgcld.2 |
|
| 3 |
|
cycsubgcld.3 |
|
| 4 |
|
cycsubgcld.4 |
|
| 5 |
|
cycsubgcld.5 |
|
| 6 |
1 2 3
|
cycsubgcl |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
7
|
simpld |
|