This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Circuits and cycles
cycliscrct
Metamath Proof Explorer
Description: A cycle is a circuit. (Contributed by Alexander van der Vekens , 30-Oct-2017) (Revised by AV , 31-Jan-2021) (Proof shortened by AV , 30-Oct-2021)
Ref
Expression
Assertion
cycliscrct
⊢ F Cycles ⁡ G P → F Circuits ⁡ G P
Proof
Step
Hyp
Ref
Expression
1
pthistrl
⊢ F Paths ⁡ G P → F Trails ⁡ G P
2
1
anim1i
⊢ F Paths ⁡ G P ∧ P ⁡ 0 = P ⁡ F → F Trails ⁡ G P ∧ P ⁡ 0 = P ⁡ F
3
iscycl
⊢ F Cycles ⁡ G P ↔ F Paths ⁡ G P ∧ P ⁡ 0 = P ⁡ F
4
iscrct
⊢ F Circuits ⁡ G P ↔ F Trails ⁡ G P ∧ P ⁡ 0 = P ⁡ F
5
2 3 4
3imtr4i
⊢ F Cycles ⁡ G P → F Circuits ⁡ G P