This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cxpge0d

Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
recxpcld.3 φ B
Assertion cxpge0d φ 0 A B

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 recxpcld.3 φ B
4 cxpge0 A 0 A B 0 A B
5 1 2 3 4 syl3anc φ 0 A B