This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
csbprc
Metamath Proof Explorer
Description: The proper substitution of a proper class for a set into a class results
in the empty set. (Contributed by NM , 17-Aug-2018) (Proof shortened by JJ , 27-Aug-2021)
Ref
Expression
Assertion
csbprc
⊢ ¬ A ∈ V → ⦋ A / x ⦌ B = ∅
Proof
Step
Hyp
Ref
Expression
1
sbcex
⊢ [ ˙ A / x ] ˙ y ∈ B → A ∈ V
2
falim
⊢ ⊥ → A ∈ V
3
1 2
pm5.21ni
⊢ ¬ A ∈ V → [ ˙ A / x ] ˙ y ∈ B ↔ ⊥
4
3
abbidv
⊢ ¬ A ∈ V → y | [ ˙ A / x ] ˙ y ∈ B = y | ⊥
5
df-csb
⊢ ⦋ A / x ⦌ B = y | [ ˙ A / x ] ˙ y ∈ B
6
fal
⊢ ¬ ⊥
7
6
abf
⊢ y | ⊥ = ∅
8
7
eqcomi
⊢ ∅ = y | ⊥
9
4 5 8
3eqtr4g
⊢ ¬ A ∈ V → ⦋ A / x ⦌ B = ∅